<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:Helvetica;
panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Dear James,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">It is a good question, on ei do not know the answer but have given it much thought. I have considered the question of why “2” as opposed to something else is
so important in wave equations…My best partial guess is that the speed of light can be considered to be particle-like where c = SQRT(1/uoeo) and wave-like where c = omega/k. c^2 takes both properties into consideration.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">See:
<a href="http://labs.plantbio.cornell.edu/wayne/pdfs/maxwell.pdf">http://labs.plantbio.cornell.edu/wayne/pdfs/maxwell.pdf</a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Thanks,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Randy<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<div>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Randy Wayne,
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Providing a Second Opinion on Scientific Issues Since 1982<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><img border="0" width="160" height="132" id="Picture_x0020_1" src="cid:image001.jpg@01D237F7.E2260D00" alt="second opinion"><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><a href="http://labs.plantbio.cornell.edu/wayne/"><span style="color:#0563C1">http://labs.plantbio.cornell.edu/wayne/</span></a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
</div>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> Physics [mailto:physics-bounces@tuks.nl]
<b>On Behalf Of </b>James Rose<br>
<b>Sent:</b> Saturday, November 05, 2016 6:29 PM<br>
<b>To:</b> General Physics and Natural Philosophy discussion list <physics@tuks.nl><br>
<b>Subject:</b> Re: [Physics] About "logical errors"<o:p></o:p></span></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div>
<p class="MsoNormal" style="background:white"><span style="color:black">Mike, Tom, et al.,<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3425">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3432">
<p class="MsoNormal" style="background:white"><span style="color:black">I would like to introduce an atypical idea that is not discussed in mathematics/physics literature.<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3455">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3530">
<p class="MsoNormal" style="background:white"><span style="color:black">We use exponents to represent many different things and relationships. One of the uses of exponent - in whole-number form (so far; there are fractal relations that do consider expanded
notions, but I won't explore those here) - is associating whole number exponents with the number of 'dimensions' present and under consideration.<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3576">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3743">
<p class="MsoNormal" style="background:white"><span style="color:black">The gravity~acceleration presumed equivalency is an especially interesting one to discuss in regards to 'dimensions'. The Einstein expansion to include time (t) as the 'fourth' dimension
has accomplished a lot in relativity. But. The reduced form of the relativity equation, E=mc^2, troubles me. Not in its equivalence relation but in regard to what "c^2" ... c squared ..,. actually 'means'. An engineer friend of mine tells me, "Don't
dwell on that, it only references time as a tensor relationship. Don't think it means anything physical, instantiated, or 'real'. It a mathematical term only."<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3777">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3915">
<p class="MsoNormal" style="background:white"><span style="color:black">Well, I don't think so. I think that "c^2" gives us a clue that time is no more a scalar or a one-dimension tensor vector than space is not 3-dimensional, when we use XxYxZ or x^3.
There are unexplored relations when we allow that time is also multi-dimensional and that "c^2" exactly identifies the cross product of TWO real time dimensions, not just a transfer coding of quantity values: energy measure to mass measure.<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4035">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4133">
<p class="MsoNormal" style="background:white"><span style="color:black">What we come to realize directly and easily from this allowance is that gravity is a real produced (emerged; secondary product) of the interaction of temporal dimensions, rather than being
one of the 4 'fundamental' forces, as currently designated.<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4132">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4145">
<p class="MsoNormal" style="background:white"><span style="color:black">Please take some time to mull this over, but please do write back your impressions.<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4146">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4147">
<p class="MsoNormal" style="background:white"><span style="color:black">Jamie Rose<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_4148">
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3390">
<p class="MsoNormal" style="margin-bottom:12.0pt;background:white"><span style="color:black"><o:p> </o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3398">
<div id="yui_3_16_0_ym19_1_1478383631866_3397">
<div id="yui_3_16_0_ym19_1_1478383631866_3396">
<div id="yui_3_16_0_ym19_1_1478383631866_3395">
<div class="MsoNormal" align="center" style="text-align:center;background:white">
<span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:black">
<hr size="1" width="100%" align="center">
</span></div>
<p class="MsoNormal" style="background:white"><b><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:black">From:</span></b><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:black"> "<a href="mailto:mike@mlawrence.co.uk">mike@mlawrence.co.uk</a>"
<<a href="mailto:mike@mlawrence.co.uk">mike@mlawrence.co.uk</a>><br>
<b>To:</b> General Physics and Natural Philosophy discussion list <<a href="mailto:physics@tuks.nl">physics@tuks.nl</a>>
<br>
<b id="yui_3_16_0_ym19_1_1478383631866_3532">Sent:</b> Saturday, November 5, 2016 2:21 PM<br>
<b>Subject:</b> Re: [Physics] About "logical errors"</span><span style="font-family:"Helvetica",sans-serif;color:black"><o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3953">
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black"><o:p> </o:p></span></p>
<div id="yiv2625157232">
<div id="yui_3_16_0_ym19_1_1478383631866_3955">
<div id="yui_3_16_0_ym19_1_1478383631866_3974">
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">Tom,
<o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3954">
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black"><br>
I don't disagree that the two situations are different. They are,and that is why your argument is looking at the wrong issue. To compare acceleration and gravitation using the same mass requires one side of the equation to be a gravitational situation and the
other to be an acceleration situation. What you describe are two different situations where the total energies are not the same. You have not provided any input for why the room is being accelerated. The only situation where the two mass situations can be
compared is the orbital force equation I quoted. <o:p></o:p></span></p>
</div>
<div id="yui_3_16_0_ym19_1_1478383631866_3967">
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">But I do agree with you that the two situations, each looked at individually, can be differentiated. As I said previously in an earlier email, the acceleration-only
situation describes a system where the total energy of the mass is positive,whereas the total energy of the mass in the gravitational-only system is negative.
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">As an aside, the orbital system is a zero total energy system for the mass (because if it had energy it would move inwards or outwards) and the energy
equation is then exactly the same as the force equation, with one less Rb on each side. The issue is that the kinetic energy of the spins of all the particles in orbital systems has been ignored so far. And with the mass energy equal to the spin energy of
all fermions, the motional energy on the kinetic side of the energy equation should be twice what it is usually said to be. This could be interpreted as producing the centrifugal force outwards that opposes the inward gravitational pull, with a balance of
both force and energy totalling zero. But it's not accepted yet....... <o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">Cheers
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">Mike
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">
<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">
<o:p></o:p></span></p>
</div>
<div id="yiv2625157232yqtfd94848">
<div>
<p class="MsoNormal" style="margin-bottom:12.0pt;background:white"><span style="font-family:"Helvetica",sans-serif;color:black">On Nov 5 2016,
<a href="mailto:carmam@tiscali.co.uk">carmam@tiscali.co.uk</a> wrote: <br>
<br>
Mike, there are two answers to your refutation of my equivalence principle argument.
<br>
<br>
1. I started out with the very simple case of an MBH being dropped from 20 metres above the Earth's surface. The total gravitational attraction is now 19.6 M/s^2 and the black hole will reach the surface in 1.4s . True or false?If the MBH is dropped from 20
metres in a "room" which is being accelerated at 9.8M/s^2 , it will hit the floor after 2s . True or false?We have to make some assumptions here. A. The accelerated room is being held at a steady 9.8M/s^2 , no matter what mass it contains.B. The fall is timed
from the reference frame of the Earth or the accelerated room.C. There are no external influences. This includes nothing influencing the clock eg it is far enough away from the MBH.D. The gravitational attraction of the MBH is 9.8 M/s^2 at 20 metres, I am
ignoring the increase as the two masses approach.Please respond before we move to the second part.<br>
Tom.<br>
<br>
<o:p></o:p></span></p>
</div>
</div>
</div>
</div>
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black"><o:p> </o:p></span></p>
<div id="yqtfd84277">
<p class="MsoNormal" style="background:white"><span style="font-family:"Helvetica",sans-serif;color:black">_______________________________________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" target="_blank">http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics</a><o:p></o:p></span></p>
</div>
<p class="MsoNormal" style="margin-bottom:12.0pt;background:white"><span style="font-family:"Helvetica",sans-serif;color:black"><o:p> </o:p></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>