<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div>Hi all, </div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">Good discusion.</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">Classical electrodynamics is inconsistent:</div><div id="AppleMailSignature">1) Lorentz force does not satisfy Newton's 3rd principle of motion for magnetostatic systems</div><div id="AppleMailSignature">2) Jefimenko fields show unexplained longitudinal electric far field solutions</div><div id="AppleMailSignature">3) electrodynamic mass and momentum of a charge q shows a 4/3 factor mismatch</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">These inconsistencies are solved as follows: </div><div id="AppleMailSignature">1) replace Lorentz' force for Whittaker 's force law that has an extra longitudinal Ampère force component</div><div id="AppleMailSignature">2) set the velocity of the electric potential much faster than 'c', and the   magnetic potential velocity to 'c', in vacuum.</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">The resulting theory is GCED (general classical electrodynamics), which is my theory explaining all well known and controversial electrodynamical observations.</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">There are two types of longitudinal electric waves:</div><div id="AppleMailSignature">-superluminal electric potential waves</div><div id="AppleMailSignature">- luminal magnetic potental waves</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">Usualy it is assumed both longitudinal wave types are luminal, such that they cancel each other! This false assumption destroyed Tesla's reputation.</div><div id="AppleMailSignature"><br></div><div id="AppleMailSignature">Randall Mills showed that QM can be reduced to Maxwell's CED, however, Mills did not explain the 'non local' quantum correlation. For this, we need my ultra luminal electric potential 'far field' waves. QM statistics is simply the chaos of dynamic elementary particles that signal all other particles with ultraluminal signals. The so called De Broglie Bohm pilot wave is in fact an energy carrying 'electric potental' longitudinal ultraluminal electric wave.<br><br>So SR/GR must be replaced by a more realistic relativity theory, and QM must be replaced by a classical generalization of CED.</div><div id="AppleMailSignature">The so called "modern physics revolution", that caused the current energy crisis", is outdated at this very moment.<br><br><div style="direction: inherit;">Best regards,</div><div style="direction: inherit;">Koen van Vlaenderen</div></div><div><br>Op 14 dec. 2016 om 16:36 heeft Arend Lammertink <<a href="mailto:lamare@gmail.com">lamare@gmail.com</a>> het volgende geschreven:<br><br></div><blockquote type="cite"><div><span>Hi Ilja,</span><br><span></span><br><span>Good to talk to you.</span><br><span></span><br><span>On Tue, Dec 13, 2016 at 9:36 PM, Ilja Schmelzer</span><br><span><<a href="mailto:ilja.schmelzer@googlemail.com">ilja.schmelzer@googlemail.com</a>> wrote:</span><br><blockquote type="cite"><span>2016-12-13 14:23 GMT+01:00, Arend Lammertink <<a href="mailto:lamare@gmail.com">lamare@gmail.com</a>>:</span><br></blockquote><blockquote type="cite"><blockquote type="cite"><span>On Sat, Dec 10, 2016 at 8:49 PM, Ilja Schmelzer</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>Exactly.  Any new theory should at least predict the observations</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>being made equally well as the existing theories.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><span>Similarly, I think that those who do not know the SM have no starting</span><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><span>point for future development of physics.</span><br></blockquote></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><blockquote type="cite"><span></span><br></blockquote></blockquote></blockquote><span></span><br><span></span><br><span>SM: Standard Model  (Maurice requested to define acronyms when used)</span><br><span></span><br><span></span><br><blockquote type="cite"><blockquote type="cite"><span></span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>I would say one does not necessarily need to understand the whole SM,</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>but one does need to understand it's basic assumptions, it's "starting</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>point".</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>Not clear enough.  Of course, I don't have to be able to compute the</span><br></blockquote><blockquote type="cite"><span>experimental</span><br></blockquote><blockquote type="cite"><span>results myself (all those scattering amplitudes and so on).</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>But I have to be able to recover, in some limit or some approximation,</span><br></blockquote><blockquote type="cite"><span>the whole</span><br></blockquote><blockquote type="cite"><span>theory.  Which includes/requires such things as the recovery of the</span><br></blockquote><blockquote type="cite"><span>equations.  So,</span><br></blockquote><blockquote type="cite"><span>to recover only some verbal ideas is far from being sufficient.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span>Yes, and that's why I need smart people like you to give me a hand and</span><br><span>figure this out, and once we are where we want to be, we can publish a</span><br><span>proper scientific paper.</span><br><span></span><br><span>In the modeling of electrotechnical phenomena, having an accurate</span><br><span>visual model for the electron, as well as the equations to describe</span><br><span>them, is of phenomenal importance.</span><br><span></span><br><span>Well, N6KPH taught me long ago, NOT to use a digital computer!</span><br><span></span><br><span>So, how about an analog computer, as he used to study longitudinal</span><br><span>wave propagation trough a coil?</span><br><span></span><br><span>May I present our first "live" dynamic model for the electron,</span><br><span>simulated with an ANALOG computer, normally the exclusive domain of</span><br><span>Electrical Engineers and Radio Amateurs:</span><br><span></span><br><span><a href="https://www.youtube.com/watch?v=pnbJEg9r1o8">https://www.youtube.com/watch?v=pnbJEg9r1o8</a></span><br><span></span><br><span>It is totally doable to describe this mathematically and include it in</span><br><span>our model.</span><br><span></span><br><span>As you can see in the analog simulation, although simulating only half</span><br><span>a vortex ring, is that the propagation direction of a vortex ring is</span><br><span>aligned with (what would be) the rotation axis of the toroid. That</span><br><span>would also be the direction of the electrical current trough a wire or</span><br><span>antenna.</span><br><span></span><br><span>So if we imagine the analogically simulated half vortex ring to be a</span><br><span>complete ring, it is entirely plausible that a net rotation around the</span><br><span>toroid (a coil winding) would be present, and thus it is entirely</span><br><span>plausible a net aether rotation *around* a conductor carrying a</span><br><span>current would be the result and thus produce a magnetic field as is</span><br><span>being observed experimentally.</span><br><span></span><br><span>And that would mean we have solved the "90 degree" problem, whereby we</span><br><span>observe the magnetic field [B] to rotate *around* a wire.</span><br><span></span><br><span>In other words:</span><br><span></span><br><span>Given the observed propagation direction of a vortex ring on the</span><br><span>surface of a relatively dense medium (water), compared to the less</span><br><span>dense medium (air) above, it can be expected that electron c.q. vortex</span><br><span>ring carried currents on the surface of a wire cause an aether</span><br><span>rotation *around* the wire, *perpendicular* to the propagation</span><br><span>direction of the electrons c.q. vortex rings carrying the electric</span><br><span>current trough the wire, the direction of the electric current.</span><br><span></span><br><span>With this, it is also entirely plausible we can calculate the</span><br><span>elemental charge, e, of the electron, as Paul already suggested and</span><br><span>explain how the Lorentz force actually works.</span><br><span></span><br><span></span><br><blockquote type="cite"><blockquote type="cite"><span>For Quantum Mechanics, this "starting point" is Young's dual slit</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>experiment, which established the wave-particle duality principle. So,</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>if you understand that experiment and can find a better, more</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>satisfactory explanation for that single experiment, you can in fact</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>come to new foundation for Particle Physics, without having to</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>understand or consider the whole particle model that has been</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>developed upon the assumption that the currently accepted explanation</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>for Young's experiment is correct.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>Of course, if your point is to recover quantum mechanics, you don't have</span><br></blockquote><blockquote type="cite"><span>to care about the details of particle theory, or QFT, which is only</span><br></blockquote><blockquote type="cite"><span>one particular</span><br></blockquote><blockquote type="cite"><span>example of a quantum theory.</span><br></blockquote><span></span><br><span>QFT: Quantum Field Theory</span><br><span></span><br><span>No, but what I'm saying is that *if* we can model the electron, which</span><br><span>I claim we can now, we have taken a tremendous step already.</span><br><span></span><br><span>What I'm arguing is that once we understand the electron, we can</span><br><span>expect to be able to eventually work the rest of them out to our</span><br><span>satisfaction.</span><br><span></span><br><span>So, now we are considering the results of our ANALOG simulation of the</span><br><span>electron, I think we made a major step forward now.</span><br><span></span><br><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>But you have to recover all the mathematics of quantum theory.</span><br></blockquote><blockquote type="cite"><span>That means wave functions, Schroedinger equations, operators to describe</span><br></blockquote><blockquote type="cite"><span>probabilities of measurement results.  So, some diffuse verbal "understanding"</span><br></blockquote><blockquote type="cite"><span>of some particular experiment is not sufficient.</span><br></blockquote><span></span><br><span>Hey!  I'm an Electrical Engineer!  I'm happy with the analog</span><br><span>simulation result, so I can see if I can figure out how to make an</span><br><span>antenna for longitudinal waves and perform that moon-bounce experiment</span><br><span>I always dreamed of doing....</span><br><span></span><br><span></span><br><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><blockquote type="cite"><span>So, if you come up with a better explanation for Young's experiment,</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>this should naturally extend all the way along the path particle</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>physics has followed in it's considerations.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>It may naturally extend, or not.  So you have to show, explicitly, that</span><br></blockquote><blockquote type="cite"><span>it does.  A vague hope that it extends does not count.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span>Well, if it doesn't, it's incorrect as is, and we have to find the bug</span><br><span>and fix it.</span><br><span></span><br><span>It's that simple!</span><br><span></span><br><span>There is no other way, but to start somewhere and follow the leads,</span><br><span>until you've either figured it out, or figured out why you did not.</span><br><span>Either way, a lesson is learned and knowledge gained.</span><br><span></span><br><span></span><br><span></span><br><blockquote type="cite"><blockquote type="cite"><span>2) There is sufficient experimental data available, which strongly</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>suggests longitudinal dielectric waves are possible, and theoretical</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>consideration suggest these would propagate at a speed of sqrt(3)</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>times c.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>This is a point were I prefer silence, simply because I'm not an</span><br></blockquote><blockquote type="cite"><span>experimenter.  Note that the mainstream does not agree.  And the</span><br></blockquote><blockquote type="cite"><span>mainstream claims that with the Maxwell equations everything is fine.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span>Well, they're wrong. Sorry about that.</span><br><span></span><br><blockquote type="cite"><span>Not that I would think that it is completely impossible that the mainstream</span><br></blockquote><blockquote type="cite"><span>fakes experimental evidence and suppresses outsiders in this domain too.</span><br></blockquote><blockquote type="cite"><span>But I leave this to experimenters in this domain.  And, for my own research,</span><br></blockquote><blockquote type="cite"><span>which is purely theoretical, I simply assume that what the mainstream claims</span><br></blockquote><blockquote type="cite"><span>about experimental support for its theories is fine.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span></span><br><span>IMHO, it's not fine at all. You can consider reading my analysis of</span><br><span>Aspect's experiment below, which I think illustrates pretty well what</span><br><span>I mean by that.</span><br><span></span><br><span>Because we are now very close to understanding the electron and have</span><br><span>solved the "90 degrees" problem in principle, we can reasonably expect</span><br><span>the odds of this leading to a break trough to be better than 50%..</span><br><span></span><br><span>From that point of view, Quantum Mechanics would essentially become</span><br><span>deterministic. So, what to think of claims that "entanglement" has</span><br><span>been experimentally proven?</span><br><span></span><br><span>A while ago, I checked Aspect's experiment, the first reasonable one,</span><br><span>as far as I know:</span><br><span></span><br><span><a href="http://www.tuks.nl/wiki/index.php/Main/QuestioningQuantumMechanics">http://www.tuks.nl/wiki/index.php/Main/QuestioningQuantumMechanics</a></span><br><span></span><br><span>RRiiiiight.</span><br><span></span><br><span>And then the "fast light" stuff:</span><br><span></span><br><span><a href="http://www.tuks.nl/wiki/index.php/Main/FastLight">http://www.tuks.nl/wiki/index.php/Main/FastLight</a></span><br><span></span><br><span>When you consider their data and their experiments from the</span><br><span>(w)a(e)ther analog computer's point of view, would you have any reason</span><br><span>to expect this "fast light" phenomenon to be anything BUT a</span><br><span>longitudinal dielectric pressure wave, propagating at theoretically</span><br><span>maximum speed of 1.73 times the speed of light?</span><br><span></span><br><blockquote type="cite"><span>As the zero hypothesis.  Everything else needs additional confirmation.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><blockquote type="cite"><span>So, if option 2) is correct and we can develop a theory with which we</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>can describe Young's experiment adequately by considering both</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>longitudinal and transverse wave types to be present, then we should</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>be able to reconsider the "wave function" currently used in particle</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>physics and thus integrate the newly found knowledge in the standard</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>particle physics model.</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span></span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>In that case, however, we must also be able to explain at least</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>Aspect's experiment, or at least be able to establish that Aspect's</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>experiment is in fact inconclusive. So, that's what I did, too:</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span></span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span><a href="http://www.tuks.nl/wiki/index.php/Main/QuestioningQuantumMechanics">http://www.tuks.nl/wiki/index.php/Main/QuestioningQuantumMechanics</a></span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>Note that adding longitudinal waves to QFT, which can be done simply by</span><br></blockquote><blockquote type="cite"><span>adding a small mass to the photon, would not change anything in the derivation</span><br></blockquote><blockquote type="cite"><span>of the Bell inequalities.</span><br></blockquote><span></span><br><span>Well, this is what I concluded then:</span><br><span></span><br><span>-:-</span><br><span>Either way, the point is that the whole experiment is designed to</span><br><span>differ between two hypothesis:</span><br><span></span><br><span>1. Quantum entanglement with "spooky action at distance";</span><br><span></span><br><span>2. a completely a priori deterministic process.</span><br><span></span><br><span>However, when you have photons, electromagnetic waves, interacting</span><br><span>with a "polarizer", then one should at least have an idea about how</span><br><span>this interaction takes place. And one should ask the question whether</span><br><span>or not the polarization process is completely random, or that it might</span><br><span>introduce some kind of conditionality that is not being accounted for.</span><br><span>-:-</span><br><span></span><br><span>The data I have seen so far, is pretty much useless. May be some more</span><br><span>data can be found in archives or on the internet?</span><br><span></span><br><span>Based on the data we have, we can only make a wild guess on what might</span><br><span>actually go on in these experiments. Had it been known at the time</span><br><span>that longitudinal dielectric waves are a vital part of our theory, and</span><br><span>at least the *possibility* had been considered, it is not far fetched</span><br><span>to believe these "fast light" experiments could very well have lead to</span><br><span>a confirmation of the existence of longitudinal dielectric waves and</span><br><span>would thus have invalidated the fundamental "randomness" of Quantum</span><br><span>Mechanics.</span><br><span></span><br><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><blockquote type="cite"><span>Let us first note that this model fundamentally describes a</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>compressible aether, since each cell can move, rotate and stretch in</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>different directions. However, this model also allows for "gauge</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>freedom" and based on that freedom, one can define the plethora of</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>imaginary fields currently used in the standard model in an attempt to</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>re-connect the statistical and imaginary "wave function", needed to</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>explain Young's experiment, to a base in physicality.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>No.  The ether model and its connection with the fields of the standard</span><br></blockquote><blockquote type="cite"><span>model of particle physics is not at all an attempt to explain or modify</span><br></blockquote><blockquote type="cite"><span>quantum theory.   It takes quantum theory as it is, in agreement with</span><br></blockquote><blockquote type="cite"><span>its minimal (Copenhagen) interpretation.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span>So, where's your "noise generator"?</span><br><span></span><br><span>You can't do that!</span><br><span></span><br><span>Aether physics is completely deterministic. Fundamentally, there is no</span><br><span>"noise", because everything resonates in harmony and therefore</span><br><span>deterministic. Fundamentally, every effect has a cause, transmitted</span><br><span>trough the medium, which thus causes an effect in a logical,</span><br><span>predictable order.</span><br><span></span><br><span>The whole "probability" thing has to do with having to resort to</span><br><span>statistics in order to come up with somewhat of a theory which at</span><br><span>least pretty much predicts the observations. How do you explain</span><br><span>Young's experiment, without considering the possibility of</span><br><span>longitudinal dielectric waves, as Tesla discovered and utilized?</span><br><span></span><br><span>Well, we just make our best guess, which would be "statistics", which</span><br><span>arbitrarily introduces uncertainty into the model.</span><br><span></span><br><blockquote type="cite"><blockquote type="cite"><span>However, i would argue that when you start out with an aetheric base,</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>modeled as a lattice of elementary cells, whereby all parameters of</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>each individual cell are deterministic, one does something wrong when</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>one arrives at the conclusion that such a model exhibits "gauge"</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>freedom.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>You obtain gauge freedom in a natural way if your abilities to observe</span><br></blockquote><blockquote type="cite"><span>reality is somehow restricted.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>In my approach the "gauge freedom" is not a real freedom, the gauge</span><br></blockquote><blockquote type="cite"><span>follows some natural equations of motion and is as well-defined in reality</span><br></blockquote><blockquote type="cite"><span>as everything else.</span><br></blockquote><blockquote type="cite"><span></span><br></blockquote><span></span><br><span>So, in essence, you introduce harmonic freedom instead of "random" freedom?</span><br><span></span><br><span>The moment you do that, you fundamentally introduce "predictability"</span><br><span>to the model, while disregarding "randomness".</span><br><span></span><br><span>You cannot go from a fundamentally harmonic aether theory, and</span><br><span>therefore fundamentally deterministic, to a "statistical" model,</span><br><span>without introducing "noise" or "randomness" somewhere along the path.</span><br><span></span><br><span></span><br><blockquote type="cite"><span>We simply have restricted possibilities to check, by experiments,</span><br></blockquote><blockquote type="cite"><span>how these gauge "degrees of freedom" really behave.  Such a human</span><br></blockquote><blockquote type="cite"><span>inability to observe something which is really defined, by the fundamental</span><br></blockquote><blockquote type="cite"><span>equation which we can only guess, is not problematic at all.</span><br></blockquote><span></span><br><span>The experimental proof, is  a problem most people have. So, what I do,</span><br><span>is to go and see what experimental data we have on, for instance,</span><br><span>"fast light" (sorry, "raw" data)</span><br><span></span><br><span><a href="http://www.tuks.nl/wiki/index.php/Main/FastLight">http://www.tuks.nl/wiki/index.php/Main/FastLight</a></span><br><span></span><br><span>Okay, they do this and this and that, and see such and such.</span><br><span></span><br><span>I ask the question: "Could I explain that?"</span><br><span></span><br><span>Intuitively: yes, pretty much.</span><br><span></span><br><span>Young's experiment?</span><br><span></span><br><span>Intuitively: yes, I'm certain.</span><br><span></span><br><span>Free Energy?</span><br><span></span><br><span>Well, not really, at least not yet. "Free energy" is still hidden</span><br><span>behind the curtain in our aether theory. Really understanding</span><br><span>magnetism and electrostatics, to start with, is required in order to</span><br><span>fully explain "free energy". I am beginning to make some progress</span><br><span>there to be able to do some measurements which would either confirm or</span><br><span>reject my theory  on that stuff.</span><br><span></span><br><span></span><br><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><blockquote type="cite"><span>In other words: IMHO a realistic and consistent aether theory should</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>*not* exhibit gauge freedom.</span><br></blockquote></blockquote><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>In some sense, I agree and my theory is in agreement with this.</span><br></blockquote><span></span><br><span>Good!</span><br><span></span><br><blockquote type="cite"><span></span><br></blockquote><blockquote type="cite"><span>But the requirement to recover, in some approximation, the gauge</span><br></blockquote><blockquote type="cite"><span>theories used today in the SM remains.</span><br></blockquote><span></span><br><span>Yes, of course!</span><br><span></span><br><span>So, my proposal would be to start with a basic hypothesis:</span><br><span></span><br><span>All of space is filled with a fluid-like substance called aether,</span><br><span>which can, in first approximation, be modeled as an ideal,</span><br><span>frictionless, compressible fluid in continuum fluid dynamics</span><br><span>approximation.</span><br><span></span><br><span>From there, we can re-derive Maxwell's equations by application of the</span><br><span>Laplacian / Helmhotz decompostion of the aether flow velocity field</span><br><span>[v]. This exercise show that there is a term dA/dt in the definition</span><br><span>for the electric scalar potential field Phi, whereby the units of</span><br><span>measurement do not match the other terms in the equation and should</span><br><span>thus be deleted.</span><br><span></span><br><span>That's where we are now.</span><br><span></span><br><span>Next is to solve the "90 degree" angle problem we encountered, which</span><br><span>we already know how to do.</span><br><span></span><br><span></span><br><span>Next could be to tackle Young's experiment. Since we have a principal</span><br><span>model for the electron now, we should be able to get a long way with</span><br><span>explaining Young's experiment. We may encounter problems, but</span><br><span>eventually we should be able to either explain the experiment or to</span><br><span>reject the theory so far.</span><br><span></span><br><span>Another possible next step would be to consider how we could use the</span><br><span>(partial) vortex tube (like in our analog simulation) as sort of a</span><br><span>fundamental building block, and see how that would hold up as a basis</span><br><span>for particle physics, by considering Mike's work and that of Arto</span><br><span>Annila, from the University of Helsinki:</span><br><span></span><br><span><a href="http://mail.tuks.nl/pipermail/physics/2016-December/000288.html">http://mail.tuks.nl/pipermail/physics/2016-December/000288.html</a></span><br><span></span><br><span>The images Arto included in his paper clearly suggest the vortex tube</span><br><span>is a suitable model to base particle physics on:</span><br><span></span><br><span><a href="http://www.helsinki.fi/~aannila/arto/atomism.pdf">http://www.helsinki.fi/~aannila/arto/atomism.pdf</a></span><br><span></span><br><span>In other words: sufficient experimental data left, which we can use to</span><br><span>refine and continue building our model.</span><br><span></span><br><span>Best regards,</span><br><span></span><br><span>Arend.</span><br><span></span><br><span></span><br><span>P.S. @Arto, @Paul, @Koen:</span><br><span></span><br><span>You can find the rest of this discussion in the list archive:</span><br><span></span><br><span><a href="http://mail.tuks.nl/pipermail/physics/2016-December/thread.html">http://mail.tuks.nl/pipermail/physics/2016-December/thread.html</a></span><br><span></span><br><span>If you're interested in participating in the discussion, you can subscribe at:</span><br><span></span><br><span><a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics">http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics</a></span><br></div></blockquote></body></html>