<div dir="ltr">Hello Tom.<div><br></div><div>On Thu, Dec 22, 2016 at 4:26 AM, <a href="mailto:carmam@tiscali.co.uk" target="_blank">carmam@tiscali.co.uk</a> <span dir="ltr"><<a href="mailto:carmam@tiscali.co.uk" target="_blank">carmam@tiscali.co.uk</a>></span> wrote:<br></div><div class="gmail_extra"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)">Ruud, I have now read your web page </span><a href="https://webmail.tiscali.co.uk/cp/ps/Mail/ExternalURLProxy?d=tiscali.co.uk&u=carmam&url=http://www.shmoop.com/forces-motion/gravity-orbital.html&urlHash=3.294858017304283E291" target="_blank"><span style="font-size:9.5pt;font-family:arial;color:rgb(67,199,0);text-decoration:none">http://www.shmoop.com/forces-m<wbr>otion/gravity-orbital.html</span></a><span style="font-size:9.5pt;font-family:arial"> </span><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)"> (speed read only, a
more leisurely read will follow), and find that I have to disagree with two
parts. </span></p></blockquote><div><br></div><div>This is not my website. Sorry I was not clear about that. </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)">This is the first :-<u></u><u></u></span></p>
<p class="MsoNormal"><span style="color:rgb(34,34,34);font-family:arial;background-color:rgb(250,248,245)">“Since we’re more familiar with weight in pounds than kilograms, we
can use the Earth-bound conversion of 1 kg in 2.2 lb to say that this same 60
kg person weighs 132 pounds on Earth, but this conversion doesn’t work for
Mars: pounds aren’t the same over there.”</span></p>
<p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)">This is not quite correct. To be sure, pounds are not the same on Mars
as they are here, and kilograms are not the same on Mars as they are here, but
the ratio is the same so the conversion does work on Mars the same as on Earth.</span></p></blockquote><div><br></div><div>In general: I would emphasize to STICK TO THE MKS system. Perhaps you want to share your comments with the webowner of <a href="http://shmoop.com">shmoop.com</a>? </div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="color:rgb(34,34,34);font-family:arial;background-color:rgb(250,248,245)">Then there is this statement :-</span></p>
<p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)"><u></u> <u></u></span><span style="color:rgb(34,34,34);font-family:arial;background-color:rgb(250,248,245)">“And what’s the orbital velocity required for orbiting planet Earth?
To answer that, we have to choose a distance from earth for the orbit. The
closer the distance between the two, the faster the necessary velocity to stay
in orbit. This is precisely why inner planets have shorter “years” around the
Sun than the outer planets. Nor can the velocity change for a given radius: by
changing the velocity, the radius of orbit changes too.”</span></p>
<p class="MsoNormal"><span style="font-family:arial;color:rgb(34,34,34);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;background-color:rgb(250,248,245)">This statement is in error, but only very slightly. However, an error
is an error. If the orbits are calculated using only the mass of the Sun and
not the mass of the planet, then your statement that the orbital velocity cannot change for a given radius is correct but only as an approximation. </span></p></blockquote><div><br></div><div>I think you are right about this. But because it would make but a very small difference I still count on "v^2 times Distance-sun) is a constant in the solarsystem. So if there is a "11278 m/s point" it would be on a Distance of 8,805933E+11 meter from the sun. The everage Distance from Jupiter to the sun is: 7,784271E+11 meter.</div><div><br></div><div><span lang="EN-US" style="font-size:9.5pt;line-height:13.5533px">The calculations with v^2/c^2 velocity 12,278 km/s are related to the Distance to the sun (the sun as reference system). So <span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">v^2/c^2 resulting in: <b>1,67737912E-09 </b></span> is <b>in reference</b> to the Sun. I wonder if anybody here around can comment on this question: How can this be related to kappa: <b><span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">Kappa times c^2 =</span></b></span><b style="font-size:12.8px"><span lang="EN-US" style="font-size:9.5pt;line-height:13.5533px;color:rgb(192,0,0);background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">1,67737912E-09 </span></b><b style="font-size:12.8px"><span lang="EN-US" style="font-size:9.5pt;line-height:13.5533px;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">m^3/kg.s^2 </span></b><b style="font-size:12.8px"><span lang="EN-US" style="font-size:9.5pt;line-height:13.5533px;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">If the Lorentz Transformation of mass-energy can be applied here than it seems that the velocity 12278 m/s is valuable for the visible part of our universe and that the velocities of our planets around the sun are “regulated” by that velocity. Please have a look at this:<br></span></b><br></div><div><table border="0" cellpadding="0" cellspacing="0" width="461" style="border-collapse:collapse;width:347pt">
<colgroup><col width="142" style="width:107pt">
<col width="237" style="width:178pt">
<col width="82" style="width:62pt">
</colgroup><tbody><tr height="17" style="height:12.75pt">
<td height="17" class="gmail-m_5168332301552104159gmail-xl65" width="142" style="height:12.75pt;width:107pt"><a href="https://en.wikipedia.org/wiki/Einstein's_constant">kappa ϰ</a></td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right" width="237" style="width:178pt">1,8663361230000000000000E-26 </td>
<td class="gmail-m_5168332301552104159gmail-xl65" width="82" style="width:62pt">m/kg</td>
</tr>
<tr height="17" style="height:12.75pt">
<td height="17" class="gmail-m_5168332301552104159gmail-xl65" style="height:12.75pt">2 x gamma -1 / c^2</td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right">1,8663359768839500000000E-26 </td>
<td class="gmail-m_5168332301552104159gmail-xl65">m/kg</td>
</tr>
<tr height="25" style="height:18.75pt">
<td height="25" class="gmail-m_5168332301552104159gmail-xl65" style="height:18.75pt">kappa * c<font class="gmail-m_5168332301552104159gmail-font8"><sup>2</sup></font><font class="gmail-m_5168332301552104159gmail-font5"> [ m</font><font class="gmail-m_5168332301552104159gmail-font8"><sup>3</sup></font><font class="gmail-m_5168332301552104159gmail-font5">/kg.s</font><font class="gmail-m_5168332301552104159gmail-font8"><sup>2</sup></font><font class="gmail-m_5168332301552104159gmail-font5"> ]</font></td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right">1,6773791244872900000000E-09 </td>
<td class="gmail-m_5168332301552104159gmail-xl66">m<font class="gmail-m_5168332301552104159gmail-font9"><sup>3</sup></font><font class="gmail-m_5168332301552104159gmail-font6">/kg.s</font><font class="gmail-m_5168332301552104159gmail-font9"><sup>2</sup></font></td>
</tr>
<tr height="21" style="height:15.75pt">
<td height="21" class="gmail-m_5168332301552104159gmail-xl65" style="height:15.75pt">v^2/c^2 =</td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right">1,6773791244873000000000E-09 </td><td class="gmail-m_5168332301552104159gmail-xl66">m<font class="gmail-m_5168332301552104159gmail-font10"><sup>2</sup></font><font class="gmail-m_5168332301552104159gmail-font7">/s</font><font class="gmail-m_5168332301552104159gmail-font10"><sup>2</sup></font></td>
</tr>
<tr height="25" style="height:18.75pt">
<td height="25" class="gmail-m_5168332301552104159gmail-xl65" style="height:18.75pt">gamma -1 =</td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right">8,3868956224364400000000E-10 </td>
<td class="gmail-m_5168332301552104159gmail-xl66">m<font class="gmail-m_5168332301552104159gmail-font9"><sup>3</sup></font><font class="gmail-m_5168332301552104159gmail-font6">/kg.s</font><font class="gmail-m_5168332301552104159gmail-font9"><sup>2</sup></font></td>
</tr>
<tr height="21" style="height:15.75pt">
<td height="21" class="gmail-m_5168332301552104159gmail-xl65" style="height:15.75pt">0,5 * v^2/c^2 =</td>
<td class="gmail-m_5168332301552104159gmail-xl67" align="right">8,3868956224365000000000E-10</td>
<td class="gmail-m_5168332301552104159gmail-xl66"> m<font class="gmail-m_5168332301552104159gmail-font10"><sup>2</sup></font><font class="gmail-m_5168332301552104159gmail-font7">/s</font><font class="gmail-m_5168332301552104159gmail-font10"><sup>2<br><br></sup></font></td></tr></tbody></table></div><div><div><table border="0" cellpadding="0" cellspacing="0" width="419" style="border-collapse:collapse;width:315pt">
<colgroup><col width="254" style="width:191pt">
<col width="165" style="width:124pt">
</colgroup><tbody><tr height="17" style="height:12.75pt">
<td height="17" class="gmail-xl65" width="254" style="height:12.75pt;width:191pt">v^2 =
12278^2</td>
<td class="gmail-xl66" align="right" width="165" style="width:124pt">1,507553174837990E+08</td>
</tr>
<tr height="17" style="height:12.75pt">
<td height="17" class="gmail-xl65" style="height:12.75pt">v^2 = ϰ *c^4 (kappa x
lightspeed ^4)</td>
<td class="gmail-xl66" align="right">1,507553292864810E+08</td>
</tr>
<tr height="17" style="height:12.75pt">
<td height="17" class="gmail-xl65" style="height:12.75pt">v = root (kappa x c^4)</td>
<td class="gmail-xl66" align="right">1,227824618121340E+04</td>
</tr></tbody></table></div></div><div><br></div><div>The velocity "v" is all based on the "velocity" of 12278 m/s. If its not a coincidence what is the real meaning of this magnitude? Or is it a loop calculation?</div><div><br></div><div>If you want to use my spreadsheet about these magnitudes and units have a look at my dropbox Excel spreadsheet: <a href="https://www.dropbox.com/s/xz8y66ha6qs8w12/calculations%20near%20kappa.xlsx?dl=0">https://www.dropbox.com/s/xz8y66ha6qs8w12/calculations%20near%20kappa.xlsx?dl=0</a></div><div>and this nice video about the earth moving through our galaxy (just the last few minutes of that video) <a href="https://www.youtube.com/watch?v=IJhgZBn-LHg&feature=youtu.be&t=19m13s">https://www.youtube.com/watch?v=IJhgZBn-LHg&feature=youtu.be&t=19m13s</a></div><div><br></div><div>Finally for Tom: the acceleration is from 0 - 3000 km/s. So the mass increase stops if the acceleration stops and the velocity stays on 3000 km/s. For the man in the rocket there is no invrease: he is pasrt of the mass. An independent observer would observe the mass increase as long as the acceleration is going on (m/s^2) and also stops if the velocity is stable (m/s). IMHO.</div><div><br></div><div>Time to sit down and enjoy some holidays. I am going on a round-trip. Be back in January. Happy New Year to all of you.</div><div><br></div><div>Best regards.<img src="cid:ii_ix2s9xxb2_1592f4c29dc64f4c" width="188" height="138" style="margin-right: 0px;"><br></div><div><br></div><div>Ruud Loeffen</div><div>================================</div></div>
</div></div>