<div dir="auto"><div dir="auto"><br></div><div dir="auto"><div style="font-family:sans-serif;font-size:13.696px" dir="auto">Dear Randy,</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">Yes! We are also thinking the same way that resonance frequency of gravity should be related to spin of proton, but we are not finding the appropriate way to approach this problem. While working with Ruud Loeffen(a member of this group)over last months, we have got equations through which it should be possible to model the solar system as an hydrogen atom which will have its own equivalent of Fine Structure Constant ( different in value from fine structure constant of hydrogen atom) and a Probability Wave Function of Solar Electron as well, similiar to Atomic Electron. But the paper that we are writing on this is still not in a demonstrable form. Once it is ready, we will share with "Task Force Gravitation" and "Physics List".</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">You must be aware that a Bohr Atom can also be modelled as LC Resonance Circuit.( Refer <a href="https://en.m.wikipedia.org/wiki/Quantum_LC_circuit" style="text-decoration-line:none;color:rgb(66,133,244)">https://en.m.wikipedia.o<wbr>rg/wiki/Quantum_LC_circuit</a>). So why can't the solar atom be modelled likewise. You may also be aware of recent technologies being developed for wireless power transmission using magnetically coupled circuits, which could be related. That is why I was thinking that possibly we could get the clue by studying chlorophyl, as we are yet to conclude the value of thar resonance frequency for gravity and about explaination of its physical significance. </div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">For average wavelength of graviton decreasing with time, I do not endorse this view. However that difference in opinion/view is not of much importance , since it is regarding distant past, and I am more interested in present.</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">Regards,</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">Tufail Abbas </div></div><div dir="auto"><br></div><div><br><div class="gmail_extra"><br><div class="gmail_quote">On 2 Dec 2017 3:30 pm, "Randy O. Wayne" <<a href="mailto:row1@cornell.edu">row1@cornell.edu</a>> wrote:<br type="attribution"><blockquote class="quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div lang="EN-US" link="blue" vlink="purple">
<div class="m_2542449718761990992WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">Dear Tufail,<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">You have an interesting idea that there could be some kind of resonance frequency for gravity. I suppose that it would
relate primarily to the resonance frequency of the spin of the proton…but I don’t know. Taking the expansion of the universe into consideration, the average wavelength of the gravitons may have decreased since the beginning of the universe (just as the average
wavelength of the black body radiation has decreased) so that the force of gravity may have changed over time (just as the counterforce that causes resistance to the movement of the galaxies etc. may have decreased over time (<a href="http://labs.plantbio.cornell.edu/wayne/pdfs/radiation%20friction.pdf" target="_blank">http://labs.plantbio.cornell.<wbr>edu/wayne/pdfs/radiation%<wbr>20friction.pdf</a>)<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">I only wrote a chapter for the Handbook of Photosynthesis so I do not have the whole book. You can see some of it on Google
Books.<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d"><a href="https://books.google.com/books?id=5k3OCwAAQBAJ&pg=PA785&lpg=PA785&dq=handbook+of+photosynthesis+third+edition&source=bl&ots=RdQvmlzamS&sig=SGflDTknOpTKL8tpD3J7TbhrRSo&hl=en&sa=X&ved=0ahUKEwi69u6pnOvXAhUB2iYKHXVoDP8Q6AEIUzAI#v=onepage&q=handbook%20of%20photosynthesis%20third%20edition&f=false" target="_blank">https://books.google.com/<wbr>books?id=5k3OCwAAQBAJ&pg=<wbr>PA785&lpg=PA785&dq=handbook+<wbr>of+photosynthesis+third+<wbr>edition&source=bl&ots=<wbr>RdQvmlzamS&sig=<wbr>SGflDTknOpTKL8tpD3J7TbhrRSo&<wbr>hl=en&sa=X&ved=<wbr>0ahUKEwi69u6pnOvXAhUB2iYKHXVoD<wbr>P8Q6AEIUzAI#v=onepage&q=<wbr>handbook%20of%<wbr>20photosynthesis%20third%<wbr>20edition&f=false</a><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">Thanks for your interesting ideas,<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">randy<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d"><u></u> <u></u></span></p>
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> Physics
[mailto:<a href="mailto:physics-bounces@tuks.nl" target="_blank">physics-bounces@tuks.<wbr>nl</a>] <b>On Behalf Of </b>Tufail Abbas<br>
<b>Sent:</b> Saturday, December 2, 2017 12:59 AM</span></p><div class="elided-text"><br>
<b>To:</b> General Physics and Natural Philosophy discussion list <<a href="mailto:physics@tuks.nl" target="_blank">physics@tuks.nl</a>><br>
<b>Subject:</b> Re: [Physics] EM waves<u></u><u></u></div><p></p><div class="elided-text">
<p class="MsoNormal"><u></u> <u></u></p>
<div>
<div>
<p class="MsoNormal">Dear Randy,<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">I had read your paper that you previously shared about gravitons, where you have discussed that gravitons(if we want to give a name) should be of large wavelength, and gravity should be an outcome of Compton like Scattering, reciprocal
shielding and a characteristic radius at which gravity should work. And I agree with those, although we don't have the actual value of wavelength and radius. <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">I think, if there is some particular wavelength/frequency is involved for gravity then the
<b>selection</b> of that frequency for energy exchange/flow should be happening through some kind of <b>resonance</b>. For example, possibly in our system there should be a central frequency around which frequencies of planets are distributed just like
<b>bandwidth</b> of resonance circuits.<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">Resonance is also happening <b>naturally</b> in chlorophyl. Hence from the perspective of biologist, would a better understanding of chlorophyl lead to better understanding of Gravity and how?<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">It seems that for photons you have shared one chapter of a book titled "Handbook of Chlorophyll" . I am interested in Full Handbook,<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">Regards,<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">Tufail Abbas <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
<div>
<p class="MsoNormal">On 1 Dec 2017 11:57 pm, "Randy O. Wayne" <<a href="mailto:row1@cornell.edu" target="_blank">row1@cornell.edu</a>> wrote:<u></u><u></u></p>
<blockquote style="border:none;border-left:solid #cccccc 1.0pt;padding:0in 0in 0in 6.0pt;margin-left:4.8pt;margin-top:5.0pt;margin-right:0in;margin-bottom:5.0pt">
<div>
<div>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">Dear Tufail,</span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">What I have to say to answer your questions depends on my model of the photon. You may or may not accept
it. </span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d"> </span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">I think that the photons created as the beginning of the universe have very very long wavelengths—and
actually act as gravitons:</span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d"><a href="http://labs.plantbio.cornell.edu/wayne/pdfs/gravitons.pdf" target="_blank">http://labs.plantbio.cornell.<wbr>edu/wayne/pdfs/gravitons.pdf</a></span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d"> </span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">About photons in general:</span><u></u><u></u></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1f497d">If the emitter (creator of the photon) does has a charge, and I am assuming that charges do exist,
then the E and B fields should be out of phase. In my model of the photon, the photon is neutral, although the neutrality comes from the sum of equal and opposite charges—yes my photon is not an elementary particle but a composite where the two particles are
complementary in terms of charge, parity and mass (as opposed to time). In this photon, the E and B fields remain a quadrature out of phase. See my model of the photon here:
<a href="http://labs.plantbio.cornell.edu/wayne/pdfs/whatisaphoton.pdf" target="_blank">
http://labs.plantbio.cornell.<wbr>edu/wayne/pdfs/whatisaphoton.<wbr>pdf</a></span><u></u><u></u></p>
<p class="MsoNormal">
<b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> Physics [mailto:<a href="mailto:physics-bounces@tuks.nl" target="_blank">physics-bounces@tuks.<wbr>nl</a>]
<b>On Behalf Of </b>Tufail Abbas<br>
<b>Sent:</b> Friday, December 1, 2017 2:39 PM</span><u></u><u></u></p>
<div>
<p class="MsoNormal"><br>
<b>To:</b> General Physics and Natural Philosophy discussion list <<a href="mailto:physics@tuks.nl" target="_blank">physics@tuks.nl</a>><br>
<b>Subject:</b> Re: [Physics] EM waves<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
<div>
<div>
<p class="MsoNormal"><span style="font-family:"Arial",sans-serif">Dear Randy,</span><u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><span style="font-family:"Arial",sans-serif">>>>>>Maxwell made a simplification that makes no sense to take seriously in terms of mechanism.</span><u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Saying that Maxwell"s simplification makes no sense is ok. But saying that it should not be taken seriously sound a bit unreasonable. Possibly (div E=0) carry some special meaning
in physical context and not absence of source. <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Every wave has a time period T. What would be the nature and properties of wave with a time period equal to the Age of the Universe?<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Actually there are many issues about Electricity and Magnetism, which still makes limited sense, particularly the unit of Electrical Charge itself. <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">We have never directly detected the charge except by measuring the force(which can easily be expressed in terms of kg, meter and second) between current carrying conductors. So
why do we have a new unit of charge called Coulumb. Is it only because, in early nineties, square root of mass and square root of length made no sense? Or possibly it was difficult assign a physical meaning to square of a second? <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">We have accepted that time as a physical parameter is same like space, so we call it space-time? Therefore, if square of a length means area, then why can't square of a second have
similar meaning? I am really interested to know that why it does not makes sense , if so?<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Regards,<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Tufail Abbas.<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"> <u></u><u></u></p>
<div>
<p class="MsoNormal">On 1 Dec 2017 8:01 pm, "Randy O. Wayne" <<a href="mailto:row1@cornell.edu" target="_blank">row1@cornell.edu</a>> wrote:<u></u><u></u></p>
<blockquote style="border:none;border-left:solid #cccccc 1.0pt;padding:0in 0in 0in 6.0pt;margin-left:4.8pt;margin-top:5.0pt;margin-right:0in;margin-bottom:5.0pt">
<p class="MsoNormal">Dear Art,<br>
The E and B are only in phase when there is no source of the wave (div E = 0). Because there is always a source of the waves div E > 0 (as you see in antennas). Maxwell made a simplification that makes no sense to take seriously in terms of mechanism.<br>
I ended my class today with two quote from Maxwell:<br>
I hope that I have fulfilled James Clerk Maxwell's goal as a teacher. He wrote, "In this class, I hope you will learn not merely results, or formulae applicable to cases that may possibly occur in our practice afterwards, but the principles on which those formulae
depend, and without which the formulae are mere mental rubbish. I know the tendency of the human mind is to do anything rather than think. But mental labour is not thought, and those who have with labour acquired the habit of application often find it much
easier to get up a formula than to master a principle."<br>
And<br>
Maxwell also wrote, "My duty is to give you the requisite foundation and to allow your thoughts to arrange themselves freely. It is best that every man should be settled in his own mind, and not be led into other men's ways of thinking under the pretence of
studying science. By a careful and diligent study of natural laws I trust that we shall at least escape the dangers of vague and desultory modes of thought and acquire a habit of healthy and vigorous thinking which will enable us to recognise error in all
the popular forms in which it appears and to seize and hold fast truth whether it be old or new."<br>
Thanks,<br>
Randy<br>
<br>
<br>
<br>
Randy Wayne,<br>
Providing a Second Opinion on Scientific Issues Since 1982<br>
<br>
<a href="http://labs.plantbio.cornell.edu/wayne/" target="_blank">http://labs.plantbio.cornell.<wbr>edu/wayne/</a><u></u><u></u></p>
<div>
<p class="MsoNormal" style="margin-bottom:12.0pt">
<br>
<br>
<br>
-----Original Message-----<br>
From: Physics [mailto:<a href="mailto:physics-bounces@tuks.nl" target="_blank">physics-bounces@tuks.<wbr>nl</a>] On Behalf Of Hans van Leunen<br>
Sent: Friday, December 1, 2017 10:06 AM<br>
To: General Physics and Natural Philosophy discussion list <<a href="mailto:physics@tuks.nl" target="_blank">physics@tuks.nl</a>><br>
Subject: Re: [Physics] EM waves<br>
<br>
This only happens in conditions in which the total change of the underlying field equals zero. It is a general feature of all basic fields. See The Mother of all Field Equations.
<a href="http://vixra.org/abs/1709.0324" target="_blank">http://vixra.org/abs/1709.0324</a> Greetings, Hans<br>
>----Origineel Bericht----<br>
>Van : <a href="mailto:art@funkhouser.ch" target="_blank">art@funkhouser.ch</a><br>
>Datum : 01/12/2017 15:49<br>
>Aan : <a href="mailto:physics@tuks.nl" target="_blank">physics@tuks.nl</a><br>
>Onderwerp : [Physics] EM waves<br>
><br>
>Hi,<br>
><br>
>When I first learned about E and B fields, I was told that the E field<br>
>is at its maximum when the B field is changing the most rapidly.<br>
><br>
>And the same for the B field.<br>
><br>
>This would imply that the E and B vectors in a plane polarized EM wave<br>
>would be shifted 90° in phase.<br>
><br>
>Maxwell's equations, though, predict that they would be in phase (i.e.,<br>
>no phase shift).<br>
><br>
>If the energy of an EM wave is proportional to E^2 (also to B^2), then<br>
>it (the energy) would be pulsed (if they are in phase).<br>
><br>
>Apparently EM waves start out from an antenna with a 90° phase shift<br>
>(near field) and are later in phase (far field).<br>
><br>
>As the EM wave proceeds from the near field to the far field, the E<br>
>vector and the B vector must slowly shift phase in order to end up<br>
>being in phase.<br>
><br>
>At some time this must have been experimentally verified.<br>
><br>
>Can someone point me to the paper (maybe even in the 1800s) where this<br>
>was shown to be true?<br>
><br>
>Or later replication(s)?<br>
><br>
>Thank you.<br>
><br>
>Best,<br>
><br>
>Art Funkhouser, Bern, Switzerland<br>
><br>
><br>
><br>
><br>
><br>
>_____________________________<wbr>__________________<br>
>Physics mailing list<br>
><a href="mailto:Physics@tuks.nl" target="_blank">Physics@tuks.nl</a><br>
><a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><br>
><br>
<br>
______________________________<wbr>_________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl" target="_blank">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><u></u><u></u></p>
</div>
<p class="MsoNormal">----IF CLASSIFICATION START----<br>
<br>
----IF CLASSIFICATION END----<u></u><u></u></p>
<div>
<p class="MsoNormal">______________________________<wbr>_________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl" target="_blank">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><u></u><u></u></p>
</div>
</blockquote>
</div>
<p class="MsoNormal"> <u></u><u></u></p>
</div>
</div>
</div>
</div>
</div>
<p class="MsoNormal" style="margin-bottom:12.0pt"><br>
______________________________<wbr>_________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl" target="_blank">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><u></u><u></u></p>
</blockquote>
</div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
</div>
</div>
</div></div>
</div>
<br>______________________________<wbr>_________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" rel="noreferrer" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><br>
<br></blockquote></div><br></div></div></div>