<div dir="ltr">Hello Carl.<div><br></div><div>I know that you don't rely on Wikipedia but there I find:<br>

<font color="#0000ff"><span style="font-family:sans-serif;font-size:14px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">The fine-structure constant, </span><i style="font-family:sans-serif;font-size:14px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">α</i><span style="font-family:sans-serif;font-size:14px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">, has several physical interpretations.<span> <br></span></span>

</font><ul style="list-style-type:disc;margin:0.3em 0px 0px 1.6em;padding:0px;font-family:sans-serif;font-size:14px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><li style="margin-bottom:0.1em"><font color="#0000ff">The ratio of the velocity of the electron in the first circular orbit of the<span> </span><a href="https://en.wikipedia.org/wiki/Bohr_model_of_the_atom" class="gmail-mw-redirect" title="Bohr model of the atom" style="text-decoration:none;background:none">Bohr model of the atom</a>, which is<span> </span><span class="gmail-mwe-math-element"><span class="gmail-mwe-math-mathml-inline gmail-mwe-math-mathml-a11y" style="display:none;overflow:hidden;width:1px;height:1px;opacity:0;font-size:16.52px"><span><span><span>{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}{\frac {e^{2}}{\hbar }}}</span></span></span></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7414f84cda3444492714a548c3999248d9e7761f" class="gmail-mwe-math-fallback-image-inline" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}{\frac {e^{2}}{\hbar }}}" style="border: 0px; vertical-align: -2.338ex; display: inline-block; width: 8.442ex; height: 6.176ex;"></span><span> </span>to the<span> </span><a href="https://en.wikipedia.org/wiki/Speed_of_light" title="Speed of light" style="text-decoration:none;background:none">speed of light</a><span> </span>in vacuum,<span> </span><i>c</i>.<sup id="gmail-cite_ref-5" class="gmail-reference" style="line-height:1;unicode-bidi:isolate;white-space:nowrap;font-size:11.2px;font-weight:normal;font-style:normal"><a href="https://en.wikipedia.org/wiki/Fine-structure_constant#cite_note-5" style="text-decoration:none;background:none">[5]</a></sup><span> </span>This is Sommerfeld's original physical interpretation. Then the square of<span> </span><i>α</i><span> </span>is the ratio between the<span> </span><a href="https://en.wikipedia.org/wiki/Hartree_energy" class="gmail-mw-redirect" title="Hartree energy" style="text-decoration:none;background:none">Hartree energy</a><span> </span>(<span class="gmail-nowrap" style="white-space:nowrap">27.2 eV = twice the<span> </span><a href="https://en.wikipedia.org/wiki/Rydberg_constant" title="Rydberg constant" style="text-decoration:none;background:none">Rydberg energy</a></span><span> </span>= approximately twice its ionization energy) and the<span> </span><a href="https://en.wikipedia.org/wiki/Electron" title="Electron" style="text-decoration:none;background:none">electron</a><span> </span><a href="https://en.wikipedia.org/wiki/Rest_energy" class="gmail-mw-redirect" title="Rest energy" style="text-decoration:none;background:none">rest energy</a><span> </span>(511 keV).</font></li></ul>

<font color="#0000ff"><br>

<br></font></div><div><font color="#000000">See: <a href="https://en.wikipedia.org/wiki/Fine-structure_constant">https://en.wikipedia.org/wiki/Fine-structure_constant</a> (2nd bullet)</font></div><div><font color="#0000ff"><br></font></div><div><font color="#0000ff">Then on the 8th- bullet you find the meaning of alpha as:<br>

</font><ul style="list-style-type:disc;margin:0.3em 0px 0px 1.6em;padding:0px;font-family:sans-serif;font-size:14px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><li style="margin-bottom:0.1em"><font color="#0000ff">The fine-structure constant gives the maximum positive charge of an atomic nucleus that will allow a stable electron-orbit around it within the Bohr model (element <a href="https://en.wikipedia.org/wiki/Feynmanium" class="gmail-mw-redirect" title="Feynmanium" style="text-decoration:none;background:none">feynmanium</a>).<sup id="gmail-cite_ref-8" class="gmail-reference" style="line-height:1;unicode-bidi:isolate;white-space:nowrap;font-size:11.2px;font-weight:normal;font-style:normal"><a href="https://en.wikipedia.org/wiki/Fine-structure_constant#cite_note-8" style="text-decoration:none;background:none">[8]</a></sup> For an electron orbiting an atomic nucleus with atomic number <i>Z</i>, <i>mv</i><sup style="line-height:1;font-size:11.2px">2</sup>/<i>r</i> = 1/4<i>πε</i><sub style="line-height:1;font-size:11.2px">0</sub> (<i>Ze</i><sup style="line-height:1;font-size:11.2px">2</sup>/<i>r</i><sup style="line-height:1;font-size:11.2px">2</sup>). The Heisenberg <a href="https://en.wikipedia.org/wiki/Uncertainty_principle" title="Uncertainty principle" style="text-decoration:none;background:none">uncertainty principle</a> momentum/position uncertainty relationship of such an electron is just <i>mvr</i> = <i>ħ</i>. The relativistic limiting value for <i>v</i> is <i>c</i>, and so the limiting value for Z is the reciprocal of the fine-structure constant, 137.<sup id="gmail-cite_ref-9" class="gmail-reference" style="line-height:1;unicode-bidi:isolate;white-space:nowrap;font-size:11.2px;font-weight:normal;font-style:normal"><a href="https://en.wikipedia.org/wiki/Fine-structure_constant#cite_note-9" style="text-decoration:none;background:none">[9]</a></sup></font></li></ul><div><font face="sans-serif"><span style="font-size:14px"><br></span></font></div><div><span style="font-size:14px;font-family:sans-serif">If you don't want to be involved with Wikipedia, I found on: </span><a href="https://physics.nist.gov/cuu/Constants/alpha.html" style="font-size:14px;font-family:sans-serif">https://physics.nist.gov/cuu/Constants/alpha.html</a><br></div><div><font face="sans-serif"><span style="font-size:14px"><br></span></font></div><div><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">The quantity</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><em style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">α</em><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">was introduced into physics by A. Sommerfeld in 1916 and in the past has often been referred to as the Sommerfeld fine-structure constant. In order to explain the observed splitting or fine structure of the energy levels of the hydrogen atom, Sommerfeld extended the Bohr theory to include elliptical orbits and the relativistic dependence of mass on velocity. The quantity</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><em style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">α,</em><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">which is equal to the ratio</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><i style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">v</i><sub style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0)">1</sub><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">/</span><i style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">c</i><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">where</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><i style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">v</i><sub style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0)">1</sub><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">is the velocity of the electron in the first circular Bohr orbit and</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><i style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">c</i><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">is the speed of light in vacuum, appeared naturally in Sommerfeld's analysis and determined the size of the splitting or fine-structure of the hydrogenic spectral lines. Sommerfeld's theory had some early success in explaining experimental observations but could not accommodate the discovery of electron spin. Although the Dirac relativistic theory of the electron introduced in 1928 solves the main aspects of the problem of the hydrogen fine-structure,</span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><em style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">α</em><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium"> </span><span style="font-family:"Myriad Roman",Syntax,Arial,Helvetica;background-color:rgb(255,255,230);color:rgb(0,0,0);font-size:medium">still determines its size as in the Sommerfeld theory. Consequently, the name "fine-structure" constant for the group of constants below has remained:</span><br></div><div><font face="sans-serif"><span style="font-size:14px"><ul style="color:rgb(0,0,0);font-family:"Times New Roman";font-size:medium;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:-webkit-left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,230);text-decoration-style:initial;text-decoration-color:initial"><ul><p><img src="https://physics.nist.gov/cuu/Images/alphaeq.gif" width="157" height="48" align="middle" alt="$$\alpha = \frac{e^2/\hbar c}{4 \pi \epsilon_0}= \frac{\mu_0 c e^2}{2 h}$$">,</p></ul></ul>



<table border="0" cellpadding="0" cellspacing="0" width="95%" style="font-family:"Times New Roman";letter-spacing:normal;text-indent:0px;text-transform:none;word-spacing:0px;background-color:rgb(255,255,230);text-decoration-style:initial;text-decoration-color:initial"><tbody><tr><td valign="top" width="90%" align="left"><font face="Myriad Roman,Syntax,Arial,Helvetica"><br class="gmail-Apple-interchange-newline">where e is the elementary charge,<span> </span><img src="https://physics.nist.gov/cuu/Images/hbar.gif" alt="h bar" hspace="1" width="11" height="19"><span> </span>=<span> </span><i>h</i>/2π where<span> </span><i>h</i><span> </span>is the Planck constant, ε<sub>0</sub><span> </span>= 1/<i>µ</i><sub>0</sub><i>c</i><sup>2</sup><span> </span>is the electric constant (permitivity of vacuum) and<span> </span><i>µ</i><sub>0</sub><span> </span>is the magnetic constant (permeability of vacuum). In the International System of Units (SI),<span> </span><i>c</i>, ε<sub>0</sub>, and<span> </span><i>µ</i><sub>0</sub><span> </span>are exactly known constants.</font><p><font face="Myriad Roman,Syntax,Arial,Helvetica">Our view of the fine-structure constant has changed markedly since Sommerfeld introduced it over 80 years ago. We now consider α the coupling constant for the electromagnetic force and similar to those for the other three known fundamental forces or interactions of nature: the gravitational force, the weak nuclear force, and the strong nuclear force. Further, since<span> </span><em>α</em><span> </span>is proportional to<span> </span><i>e</i><sup>2</sup>, it is viewed as the square of an effective charge "screened by vacuum polarization and seen from an infinite distance.</font></p></td></tr></tbody></table>

<br></span></font></div><div><font face="sans-serif"><span style="font-size:14px">

<span style="color:rgb(34,34,34);font-family:sans-serif;font-size:14px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Any comments?</span>

<br></span></font></div><div><font face="sans-serif"><span style="font-size:14px"><br></span></font></div><div><font face="sans-serif"><span style="font-size:14px">Best regards.</span></font></div><div><font face="sans-serif"><span style="font-size:14px"><br></span></font></div><div><font face="sans-serif"><span style="font-size:14px">Ruud Loeffen</span></font></div>

<br></div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Jan 29, 2018 at 10:18 PM,  <span dir="ltr"><<a href="mailto:cj@mb-soft.com" target="_blank">cj@mb-soft.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><u></u>





<div bgcolor="#ffffff">
<div><font size="2" face="Arial">The "Fine Structure Constant" only applies to the 
internal structure of the atomic nucleus, and it has absolutely nothing to do 
with any electrons in their orbitals.  </font></div>
<div><font size="2" face="Arial"></font> </div>
<div><font size="2" face="Arial">C Johnson</font></div>
<div> </div></div>
<br>______________________________<wbr>_________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" rel="noreferrer" target="_blank">http://mail.tuks.nl/cgi-bin/<wbr>mailman/listinfo/physics</a><br>
<br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><font face="comic sans ms, sans-serif" size="2"><b>Ruud Loeffen</b></font><div><font face="monospace, monospace">Paardestraat32</font></div><div><font face="monospace, monospace">6131HC Sittard</font></div><div><a href="http://www.human-DNA.org" style="font-size:12.8px" target="_blank">http://www.human-DNA.org</a><br></div></div></div></div></div>
</div>