<div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">Hi Ruud,<br><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Apr 29, 2020 at 8:36 AM Ruud Loeffen <<a href="mailto:rmmloeffen@gmail.com">rmmloeffen@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="auto"></div><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:11pt">Hello Arend.</span><br></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:11pt">My papers were
once characterized by C</span>arl<span style="font-size:11pt"> Johnson as being “Kindergarten-talk”. Since you
mentioned that once there was <b>a child</b> that shouted ”The emperor does not wear
any clothes”, I am not bothering about the classification Kindergarten-talk.
However, the more I know, I know, I know less. Knowledge.</span></p></div></blockquote><div><br></div><div><div>Little has changed since Einstein's time, I'm afraid:</div><div><br></div><div>"I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today — and even professional scientists — seem to me like someone who has seen thousands of trees but has never seen a forest. A knowledge of the historic and philosophical background gives that kind of independence from prejudices of his generation from which most scientists are suffering. This independence created by philosophical insight is — in my opinion — the mark of distinction between a mere artisan or specialist and a real seeker after truth." Letter to Robert A. Thorton, Physics Professor at University of Puerto Rico (7 December 1944) [EA-674, Einstein Archive, Hebrew University, Jerusalem].</div><div><br></div><div>Even though we now know the reason people can't see the forest, it remains to be very hard to get to "that kind of independence from prejudices of his generation from which most scientists are suffering". </div></div><div><br></div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><br></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">Anyway: I
am not a physicist, and not a mathematician. So, it might be difficult to
understand me </span><span lang="EN-US" style="font-family:"Segoe UI Emoji",sans-serif">😉</span><span lang="EN-US">. </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">You wrote: On
Tue, Apr 28, 2020 at 6:28 AM to Ruud Loeffen</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">“There are
these gaps, like where the heck did he get that<br>
3kT formula? and others like it, but at the end of the day it's the<br>
(fundamental) ideas that matter most, math and references can (and<br>
will eventually) be corrected.”</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">I was
triggered by your question <b>“where the heck did he get that<br>
3kT formula”. </b>("He" is Paul Stowe)<br><br>
</span></p><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%"><span lang="EN-US" style="font-family:Calibri,sans-serif;font-size:11pt">I used this parameter “3kT” also in a formula that I found on: </span><a href="https://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#Typical_speeds" style="font-family:Calibri,sans-serif;font-size:11pt;color:blue" target="_blank"><i><span lang="EN-US">Maxwell-Bolzmann distribution mean square speed</span></i></a><span style="line-height:107%"> <span lang="EN-US"><font face="arial, sans-serif">from where I used the equation to calculate the Root Mean square
velocity of a primordial elementary particle in CMB</font><br></span></span><font face="Calibri, sans-serif"><span lang="EN-US" style="font-size:9pt;line-height:107%"></span></font></p><div><img src="cid:ii_k9krtpn20" alt="image.png" width="78" height="42" style="margin-right: 0px;"><br></div>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><b><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif;color:rgb(3,30,49)"></span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><img src="cid:ii_k9krwmdb1" alt="image.png" width="412" height="287" style="font-family: Arial, Helvetica, sans-serif; font-size: small;"><br></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">K being the
Boltzmann constant (I used kB in equation 312) and T is the Temperature of the
Microwave Background ( I used Tcmb) and for “m” I used mep: mass of a
primordial particle.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><b><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif;color:rgb(3,30,49)">( </span></b><a href="https://en.wikipedia.org/wiki/Cosmic_microwave_background" style="color:blue" target="_blank"><i><span lang="EN-US">https://en.wikipedia.org/wiki/Cosmic_microwave_background</span></i></a><i><u><span style="color:blue"> </span></u></i><b><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif;color:rgb(3,30,49)"> )</span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US"></span></p></div></blockquote><div><br></div><div><br></div><div><div>Yep, I could find the formula with the 3/2 kT as well, which did not match Paul's. According to Thornhill, this has to do with the number of degrees of freedom in the gas:</div><div><br></div><div><a href="http://www.etherphysics.net/CKT1.pdf">http://www.etherphysics.net/CKT1.pdf</a></div><div><br></div><div>"Thus, the quest for a gas-like ethereal medium, satisfying Planck’s form for the energy distribution, is directed to an ideal gas formed by an infinite variety of particles, all having six degrees of freedom."</div><div><br></div><div>Normally, one considers three degrees of freedom associated with the velocity I think, but the particles also spin around a certain axis and therefore there's actually six degrees of freedom.</div><div><br></div><div>Note that this once again illustrates the importance of the Helmholtz decomposition, which establishes a fundamental separation into two components: (a field describing) translation and (a field describing) rotation.</div></div><div><br></div><div>Paul wrote:</div><div><br></div><div>-:-</div><div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">The equation hv = 3kT comes from the relationship hv = mc^2. The kinetic energy equation is E = (1/2)mv^2 and the molecular thermal energy equation is E = (3/2)kT thus,</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">(1/2)mv^2 = (3/2)kT ==> mv^2 = 3kT</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">with v = c then mc^2 = 3kT = hv</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">In the vortex model charge (q) represents and harmonic mass (m) oscillation (kg/sec), thus the charge to mass ratio (q/m)of of an electron represents its basic oscillation (v). Given,</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">hv = 3kT = h(q/m)</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">so</div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"><br></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif"> T = hq / 3mk</div></div><div dir="ltr" style="font-size:13px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif">-:-</div><div><br></div><div>So, this seems to match yours, but I'm afraid it's incorrect like this, because you also have to account for the spin energy.</div><div><br></div><div>According to:</div><div><a href="https://en.wikipedia.org/wiki/Rotational_energy">https://en.wikipedia.org/wiki/Rotational_energy</a><br></div><div><br></div><div>E_rotational = (1/2) I <span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium;text-align:center">𝟂^2</span></div><div><span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium;text-align:center"><br></span></div><div><span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium;text-align:center">So, I think the correct formula would be:</span></div><div style="text-align:center"><br></div><div><span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium">(1/2) (mv^2 + I </span><span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium">𝟂^2)</span><span style="color:rgb(0,0,0);font-family:-webkit-standard;font-size:medium"> = kT</span></div><div><br></div><div><br></div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US"> </span></p><div><img src="cid:ii_k9krxovz2" alt="image.png" width="412" height="80"><br></div>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US"></span><span lang="EN-US"></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">I calculated this on advice of my colleague Tufail Abbas. We were really shocked to find that the mass we found was indeed of a magnitude close to an electron. This
velocity V</span><span lang="EN-US" style="font-size:8pt;line-height:107%">cmb</span><span lang="EN-US"> is the same as the V</span><span lang="EN-US" style="font-size:8pt;line-height:107%">rms</span><span lang="EN-US"> 12.278 km/sec that we find in our solar system and the VRMS 12.278
km/sec being the proposed Universal Root Mean Square Velocity. The value of the mass of this elementary
particle m</span><span lang="EN-US" style="font-size:8pt;line-height:107%">ep</span><span lang="EN-US"> is (deliberately) proposed as 7.4868348523E-31 kg. This is remarkably
close to the estimated value of the Mass of an electron: 9.1091E-31kg. It’s a
little bit less in weight than an electron (as might be expected for a PRIMORDIAL
elementary particle).</span></p></div></blockquote><div><br></div><div>So, now you have something to ponder about. Because you did not account for the spin energy, you've found a discrepancy. The question is: how to resolve it?</div><div><br></div><div>Since rotational energy is actually what's stored in the magnetic field, the magnetic energy stored within the electron should be computable and is one and the same as what one would consider it's mass-spin energy.</div><div><br></div><div><a href="https://en.wikipedia.org/wiki/Magnetic_energy">https://en.wikipedia.org/wiki/Magnetic_energy</a><br></div><div>"<span style="font-family:sans-serif;font-size:14px">The energy per unit volume in a region of space of</span><span style="font-family:sans-serif;font-size:14px"> </span><a href="https://en.wikipedia.org/wiki/Permeability_(electromagnetism)" title="Permeability (electromagnetism)" style="font-family:sans-serif;font-size:14px;text-decoration:none;color:rgb(11,0,128);background-image:none">permeability</a><span style="font-family:sans-serif;font-size:14px"> </span><span class="gmail-mwe-math-element" style="font-family:sans-serif;font-size:14px"><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe2fd9b8decb38a3cd158e7b6c0c6e2d987fefcc" class="gmail-mwe-math-fallback-image-inline" alt="{\displaystyle \mu _{0}}" style="border: 0px; vertical-align: -0.838ex; margin: 0px; display: inline-block; width: 2.456ex; height: 2.176ex;"></span><span style="font-family:sans-serif;font-size:14px"> </span><span style="font-family:sans-serif;font-size:14px">containing magnetic field</span><span style="font-family:sans-serif;font-size:14px"> </span><span class="gmail-mwe-math-element" style="font-family:sans-serif;font-size:14px"><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="gmail-mwe-math-fallback-image-inline" alt="\mathbf {B}" style="border: 0px; vertical-align: -0.338ex; margin: 0px; display: inline-block; width: 1.901ex; height: 2.176ex;"></span><span style="font-family:sans-serif;font-size:14px"> </span><span style="font-family:sans-serif;font-size:14px">is:</span></div><dl style="margin-top:0.2em;margin-bottom:0.5em;font-family:sans-serif;font-size:14px"><dd style="margin-left:1.6em;margin-bottom:0.1em;margin-right:0px"><span class="gmail-mwe-math-element"><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e67fb7bb3123fd60804ed1f0a2f1c8a51e480db9" class="gmail-mwe-math-fallback-image-inline" alt="{\displaystyle u={\frac {1}{2}}{\frac {B^{2}}{\mu _{0}}}}" style="border: 0px; vertical-align: -2.338ex; display: inline-block; width: 10.081ex; height: 6.176ex;">"</span></dd></dl><div><br></div><div>This brings one to the magnetic moment of the electron, around which there is an anomaly, for which Paul has an explanation:</div><div><br></div><div><a href="https://en.wikipedia.org/wiki/Electron_magnetic_moment#Spin_magnetic_dipole_moment">https://en.wikipedia.org/wiki/Electron_magnetic_moment#Spin_magnetic_dipole_moment</a><br></div><div>"<span style="font-family:sans-serif;font-size:14px">The total</span><span style="font-family:sans-serif;font-size:14px"> </span><a href="https://en.wikipedia.org/wiki/Magnetic_dipole_moment" class="gmail-mw-redirect" title="Magnetic dipole moment" style="font-family:sans-serif;font-size:14px;text-decoration:none;color:rgb(11,0,128);background-image:none">magnetic dipole moment</a><span style="font-family:sans-serif;font-size:14px"> </span><span style="font-family:sans-serif;font-size:14px">resulting from both spin and orbital angular momenta of an electron is related to the total angular momentum</span><span style="font-family:sans-serif;font-size:14px"> </span><b style="font-family:sans-serif;font-size:14px">J</b><span style="font-family:sans-serif;font-size:14px"> </span><span style="font-family:sans-serif;font-size:14px">by a similar equation:</span></div><dl style="margin-top:0.2em;margin-bottom:0.5em;font-family:sans-serif;font-size:14px"><dd style="margin-left:1.6em;margin-bottom:0.1em;margin-right:0px"><span class="gmail-mwe-math-element"><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41b43958c5245c772eb8c6bd1d7512264d9cc9ee" class="gmail-mwe-math-fallback-image-inline" alt="{\displaystyle {\boldsymbol {\mu }}_{J}=g_{J}\mu _{\text{B}}{\frac {\mathbf {J} }{\hbar }}.}" style="border: 0px; vertical-align: -2.005ex; display: inline-block; width: 14.06ex; height: 5.509ex;"></span></dd></dl><p style="margin:0.5em 0px;font-family:sans-serif;font-size:14px">The <a href="https://en.wikipedia.org/wiki/G-factor_(physics)" title="G-factor (physics)" style="text-decoration:none;color:rgb(11,0,128);background-image:none">g-factor</a> <i>g<sub style="line-height:1;font-size:11.199999809265137px">J</sub></i> is known as the <a href="https://en.wikipedia.org/wiki/Land%C3%A9_g-factor" title="Landé g-factor" style="text-decoration:none;color:rgb(11,0,128);background-image:none">Landé g-factor</a>, which can be related to <i>g<sub style="line-height:1;font-size:11.199999809265137px">L</sub></i> and <i>g<sub style="line-height:1;font-size:11.199999809265137px">S</sub></i> by quantum mechanics. See <a href="https://en.wikipedia.org/wiki/Land%C3%A9_g-factor" title="Landé g-factor" style="text-decoration:none;color:rgb(11,0,128);background-image:none">Landé g-factor</a> for details."</p><p style="margin:0.5em 0px;font-family:sans-serif;font-size:14px">"For the electron spin, the most accurate value for the spin <a href="https://en.wikipedia.org/wiki/G-factor_(physics)" title="G-factor (physics)" style="text-decoration:none;color:rgb(11,0,128);background-image:none">g-factor</a> has been experimentally determined to have the value</p><dl style="margin-top:0.2em;margin-bottom:0.5em;font-family:sans-serif;font-size:14px"><dd style="margin-left:1.6em;margin-bottom:0.1em;margin-right:0px"><span class="gmail-nowrap" style="white-space:nowrap"><span></span>2.002<span style="margin-left:0.25em">319</span><span style="margin-left:0.25em">304</span><span style="margin-left:0.25em">361</span><span style="margin-left:0.25em">82</span>(52)</span>.<sup id="gmail-cite_ref-3" class="gmail-reference" style="line-height:1;unicode-bidi:isolate;white-space:nowrap;font-size:11.199999809265137px"><a href="https://en.wikipedia.org/wiki/Electron_magnetic_moment#cite_note-3" style="text-decoration:none;color:rgb(11,0,128);background-image:none">[3]</a></sup></dd></dl><p style="margin:0.5em 0px;font-family:sans-serif;font-size:14px">Note that it is only two thousandths larger than the value from the Dirac equation. The small correction is known as the <a href="https://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment" title="Anomalous magnetic dipole moment" style="text-decoration:none;color:rgb(11,0,128);background-image:none">anomalous magnetic dipole moment</a> of the electron; it arises from the electron's interaction with virtual photons in <a href="https://en.wikipedia.org/wiki/Quantum_electrodynamics" title="Quantum electrodynamics" style="text-decoration:none;color:rgb(11,0,128);background-image:none">quantum electrodynamics</a>. In fact, one famous triumph of the <a href="https://en.wikipedia.org/wiki/Quantum_electrodynamics" title="Quantum electrodynamics" style="text-decoration:none;color:rgb(11,0,128);background-image:none">quantum electrodynamics</a> theory is the accurate prediction of the electron g-factor. The most accurate value for the electron magnetic moment is</p><dl style="margin-top:0.2em;margin-bottom:0.5em;font-family:sans-serif;font-size:14px"><dd style="margin-left:1.6em;margin-bottom:0.1em;margin-right:0px"><span class="gmail-nowrap" style="white-space:nowrap"><span></span>−9.284<span style="margin-left:0.25em">764</span><span style="margin-left:0.25em">620</span>(57)<span style="margin-left:0.25em;margin-right:0.15em">×</span>10<sup style="line-height:1;font-size:11.199999809265137px">−24</sup> J/T</span>.<sup id="gmail-cite_ref-4" class="gmail-reference" style="line-height:1;unicode-bidi:isolate;white-space:nowrap;font-size:11.199999809265137px"><a href="https://en.wikipedia.org/wiki/Electron_magnetic_moment#cite_note-4" style="text-decoration:none;color:rgb(11,0,128);background-image:none">[4]</a></sup><span style="font-size:11.199999809265137px;white-space:nowrap;vertical-align:super">"</span></dd></dl><p style="margin:0.5em 0px;font-family:sans-serif;font-size:14px"><br></p><div><br></div><div>So yes, it seems to me you guys are up to something, but you're not completely there yet. Don't know how to work this all out, but perhaps others have something to add.</div><div><br></div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">I found
some support in this paper: </span><a href="http://sci.esa.int/planck/61396-planck-finds-no-new-evidence-for-cosmic-anomalies/" style="color:blue" target="_blank"><span lang="EN-US" style="color:rgb(17,85,204)">http://sci.esa.int/planck/61396-planck-finds-no-new-evidence-for-cosmic-anomalies/</span></a></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">This paper
was specifically interesting for me because of this phrase (see my bolded
indication):</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><i><span lang="EN-US">“....</span></i><i><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif"><font color="#031e31">the
Planck team looked at the polarisation of the CMB, which was revealed after a
painstaking analysis of the multi-frequency data designed to eliminate
foreground sources of microwave emission, including gas and dust in our own
Milky Way galaxy. This signal is the best measurement to date of the so-called
CMB polarisation E-modes, and </font><b><font color="#031e31">dates back
to the time when the first atoms formed in the Universe and the CMB was
released. It is produced by the way light scattered off electron particles </font><font color="#9900ff">just
before the electrons were gathered into hydrogen atoms</font></b></span></i><b><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif"><font color="#9900ff">”</font></span><span lang="EN-US" style="font-size:9pt;line-height:107%;font-family:Verdana,sans-serif;color:rgb(3,30,49)">.</span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">This
primordial elementary particle would have an energy of 6.728*10^-14 Joules and
4.199*10^5 eV Just say: 4.2*10^5 eV</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">I describe
this in “Prediction4: Velocity of Cosmic
Microwave Background” in </span><a name="m_-2029326491203296094__Hlk533508177"></a><a name="m_-2029326491203296094__Hlk530917529"></a><a href="http://bit.ly/2CFGDIh" style="color:blue" target="_blank"><b><span lang="EN-US" style="font-size:9pt;line-height:107%;color:rgb(0,176,80)">CON-FUSING GRAVITATION. Applying the Lorentz Transformation of
Mass-Energy</span></b></a><span lang="EN-US"> </span><a href="http://bit.ly/2CFGDIh" style="color:blue" target="_blank"><span lang="EN-US" style="font-size:9pt;line-height:107%">http://bit.ly/2CFGDIh</span></a><span lang="EN-US"><br>
I attach the book as a .PDF in which its more easy to search and scroll down.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">I strongly
advice real physicists NOT to read my book (it will be embarrassing).</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">Some weeks
ago, I posted on Physicslist my recently produced You Tube video’s. I did not
get any reaction from the list. One of the video’s is about the VRMS: </span><span style="font-size:8pt;line-height:107%"><a href="http://bit.ly/2U5xOzb" style="color:blue" target="_blank"><b><span lang="EN-US" style="font-size:12pt;line-height:107%;color:rgb(0,176,80)">A primordial velocity. The VRMS of a semi closed system</span></b></a></span><span style="color:blue"><span lang="EN-US"> <a href="http://bit.ly/2U5xOzb" style="color:blue" target="_blank">http://bit.ly/2U5xOzb</a></span></span></p></div></blockquote><div><br></div><div>I saw you used what looked like the Lorentz transform. A while ago, Paul posted an interesting page about that on the LinkedIn "theoretical physics" group:</div><div><br></div><div><a href="https://www.linkedin.com/feed/update/urn:li:activity:6600216501179994112">https://www.linkedin.com/feed/update/urn:li:activity:6600216501179994112</a></div><div><br></div><div><img src="cid:ii_k9l2og8t3" alt="image.png" width="367" height="472"><br></div><div> </div><div><br></div><div>Some of his comments:</div><div><br></div><div>"<span style="color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;font-size:14px;white-space:pre-wrap;background-color:rgb(243,246,248)">I wish I could comment when posting the topic. This is a scan from the "Handbook of Physics" Condon & Odishaw Section 3, Chapter 8 Topic 9. Look closely and you'll see that any moving oscillator at less that the sonic speed will have its field profile distorted in a Lorentzian fashion (Fig 8.2). In this case (which should be obvious) since the propagation cannot exceed sonic velocity (c) the 'net' forward speed of propagation must reduce (c - v). What is not so obvious is that the reverse is also true, resulting in the illustrated Lorentzian contraction along the axis of propagation. Compare Feynman's illustration Fig 26-4(b) (Vol II) to Fig 8-2 (a)."</span></div><div><span style="color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;font-size:14px;white-space:pre-wrap;background-color:rgb(243,246,248)"><br></span></div><div><br></div><div><br></div><div>"<span style="background-color:transparent;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;font-size:14px;white-space:pre-wrap">I did not ask what we have defined our system around... I asked a physics question. What makes light speed finite, causes it properties (like Doppler shift, etc.) gives it its Lorentzian nature. Please answer the question within the confines of the current paradigm without resorting to basically, "it is what it is" because we measure it so... Essentially, don't ask that question!</span></div><span id="ember1676" class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit">
As for Whittaker IIRC it was I that pointed you to that reference and am well aware of its contents. When I get home from my trip I'll post Whittaker's take which most certainly DOES NOT! jibe with what you are claiming. For the reader one should get the two volume set:
</span></span><a tabindex="0" rel="noopener noreferrer" target="_blank" href="https://www.amazon.com/History-Theories-Aether-Electricity-Volumes/dp/0486261263" id="ember1679" class="gmail-feed-link ember-view" style="box-sizing:inherit;margin:0px;padding:0px;font-size:14px;vertical-align:baseline;background-color:transparent;text-decoration:none;font-weight:600;border:0px;color:rgb(102,94,208);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit">https://www.amazon.com/History-Theories-Aether-Electricity-Volumes/dp/0486261263</a><span id="ember1681" class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit">
It is a must read.
Yet Whittaker chronicles the works of many physicist up to the turn of the twentieth century and there views. Just like there exist several takes on the same topic in current physics. You cited Maxwell's 1856 work, question is a superfluid like He3 like normal fluids? Four years later Maxwell makes very explicitly clear what he is working with..</span></span></div><div class="gmail_quote"><span class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit"><br></span></span></div><span id="ember1710" class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit">.. Cont: Ref:
</span></span><div class="gmail_quote"><span class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit"><a tabindex="0" rel="noopener noreferrer" target="_blank" href="https://www.google.com/search?client=firefox-b-1&ei=tzbIXbPgIMus0PEPuta08AM&q=on+physical+lines+of+force+pdf&oq=%22On+Physical+Lines+of+Force%22&gs_l=psy-ab.1.0.0j0i22i30l4.3886.22264..25900...1.0..0.103.2503.27j1......0....1..gws-wiz.....6..0i362i308i154i357j0i131j0i67j0i10i67j0i22i10i30.g-zcLugUeQM" id="ember1713" class="gmail-feed-link ember-view" style="box-sizing:inherit;margin:0px;padding:0px;vertical-align:baseline;background-color:transparent;font-weight:600;border:0px;color:rgb(84,75,194);line-height:inherit">https://www.google.com/search?client=firefox-b-1&ei=tzbIXbPgIMus0PEPuta08AM&q=on+physical+lines+of+force+pdf&oq=%22On+Physical+Lines+of+Force%22&gs_l=psy-ab.1.0.0j0i22i30l4.3886.22264..25900...1.0..0.103.2503.27j1......0....1..gws-wiz.....6..0i362i308i154i357j0i131j0i67j0i10i67j0i22i10i30.g-zcLugUeQM</a></span></span></div><div class="gmail_quote"><span class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit"><br></span></span></div><div class="gmail_quote"><span class="ember-view" style="box-sizing:inherit;margin:0px;padding:0px;border:0px;font-size:14px;vertical-align:baseline;background-color:transparent;outline:0px;color:rgba(0,0,0,0.901961);font-family:-apple-system,system-ui,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue","Fira Sans",Ubuntu,Oxygen,"Oxygen Sans",Cantarell,"Droid Sans","Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Lucida Grande",Helvetica,Arial,sans-serif;white-space:pre-wrap;line-height:inherit"><span style="box-sizing:inherit;margin:0px;padding:0px;border:0px;vertical-align:baseline;background-color:transparent;outline:0px;line-height:inherit">"</span></span><div><br></div><div><br></div><div>Seems to me these ideas are interesting to explore and discuss.</div><div><br></div><div><br></div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif">Perhaps I have to shout more loudly. <span lang="EN-US">Or keep my mouth shut.</span></p></div></blockquote><div><br></div><div>It seems the best way to earn resepect and recognition is to engage with other people in discussions by answering their questions. </div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">
<p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-US">Arend, I
support your idea about the group discussion tool (</span><span lang="EN-US" style="font-family:Arial,sans-serif;color:rgb(80,0,80)">peer review process</span>)<span lang="EN-US">. I found a nice group on <a href="http://academia.edu" target="_blank">academia.edu</a> where we
exchange ideas in a friendly way to cooperate and try to find progress. I
probably would join your </span><span lang="EN-US" style="font-family:Arial,sans-serif;color:rgb(80,0,80)">peer review process</span>.
IT IS possible to exchange ideas in a way to make progress by sharing and
collaborating.</p></div></blockquote><div><br></div><div>I was thinking about publishing my paper on researchgate, once I'm satisfied with the result. Had trouble loggin in to academia, but just tried a password reset, may that helps.</div><div><br></div><div>Best regards,</div><div><br></div><div>Arend.</div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><br></p><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif">Best regards.</p><p class="MsoNormal" style="margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif">Ruud Loeffen</p><div class="gmail_quote"><div dir="ltr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Arend Lammertink</strong> <span dir="ltr"><<a href="mailto:lamare@gmail.com" target="_blank">lamare@gmail.com</a>></span><br>Date: di 28 apr. 2020 20:04<br>Subject: [Physics] Gravity, CMB and use of wiki page.<br>To: General Physics and Natural Philosophy discussion list <<a href="mailto:physics@tuks.nl" target="_blank">physics@tuks.nl</a>><br>Cc: Paul Stowe <<a href="mailto:paul.stowe@sbcglobal.net" target="_blank">paul.stowe@sbcglobal.net</a>><br></div><br><br>Hi Ruud,<br>
<br>
On Tue, Apr 28, 2020 at 6:28 AM Ruud Loeffen <<a href="mailto:rmmloeffen@gmail.com" rel="noreferrer" target="_blank">rmmloeffen@gmail.com</a>> wrote:<br>
><br>
> Arend.<br>
><br>
> You wrote:<br>
> "Since it is an extention of Stowe's work, it predicts that the<br>
> elementary particle called electron can be modeled as a single vortex<br>
> ring which results in an actual understanding of "the quanta" as well<br>
> as an actual understanding of what "charge" is. It also predicts that<br>
> the observed cosmic background radiation, resulting in a minimum<br>
> temperature of about 2.7 K, is related to the characteristic<br>
> oscillation frequency of the electron".<br>
> Can you (or Paul Stowe)present a link to a paper where this is explained? I am especially interested in "It also predicts that<br>
> the observed cosmic background radiation, resulting in a minimum<br>
> temperature of about 2.7 K, is related to the characteristic<br>
> oscillation frequency of the electron".<br>
><br>
> I also have a calculation in my book "Con-fusing Gravitation" about the relation between the temperature of CMBR (2.726 K) and a primordial elementary particle. I would like to read Paul Stowes pape about this subject.<br>
><br>
<br>
Stowe is sometimes a bit hard to read, but here it is (same answer as to Tom):<br>
<br>
<a href="https://vixra.org/abs/1310.0237" rel="noreferrer noreferrer" target="_blank">https://vixra.org/abs/1310.0237</a><br>
<br>
See attached image for relevant part.<br>
<br>
Problem I had is that I couldn't find the 3kT anywhere, but I<br>
eventually found this, as I wrote to Paul a while ago:<br>
<br>
"I also found a rather interesting paper regarding black body<br>
radiation in relation to aether theory:<br>
<br>
<a href="http://www.etherphysics.net/CKT1.pdf" rel="noreferrer noreferrer" target="_blank">http://www.etherphysics.net/CKT1.pdf</a><br>
<br>
"It is shown that Planck’s energy distribution for a black-body<br>
radiation field can be simply derived for a gas-like ether with<br>
Maxwellian statistics. The gas consists of an infinite variety of<br>
particles, whose masses are integral multiples n of the mass of the<br>
unit particle, the abundance of n-particles being proportional to<br>
n^−4. The frequency of electromagnetic waves correlates with the<br>
energy per unit mass of the particles, not with their energy, thus<br>
differing from Planck’s quantum hypothesis. Identifying the special<br>
wave-speed, usually called the speed of light, with the wave-speed in<br>
the 2.7oK background radiation field, leads to a mass 1/2 × 10−39(kg)<br>
for the unit ether-particle, and an average number of about 360 ether<br>
particles per cubic centimetre in the background radiation field,<br>
whose density is about 0.2 ×10−30(kg)/m3."<br>
<br>
I find the number of 360 ether particles per cubic centimetre hard to<br>
believe, so there may be errors in there. Either way, it also uses the<br>
E=3kT and explains that this is because there are 6 degrees of<br>
freedom, while your h(nu)=3kT comes a bit out of the blue, which is<br>
why I found this paper when searching for 3kT.....<br>
-:-<br>
<br>
<br>
Stowe has the right ideas and insights, but unfortunately he had to do<br>
without "peer review" nor "group think", which does show itself in<br>
this paper. There are these gaps, like where the heck did he get that<br>
3kT formula? and others like it, but at the end of the day it's the<br>
(fundamental) ideas that matter most, math and references can (and<br>
will eventually) be corrected.<br>
<br>
Often, his older work gives clues which help working things out.<br>
Collected quite a bit here:<br>
<br>
<a href="http://www.tuks.nl/pdf/Reference_Material/Paul_Stowe/" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/pdf/Reference_Material/Paul_Stowe/</a><br>
<br>
and here:<br>
<br>
<a href="http://www.tuks.nl/wiki/index.php/Main/StoweCollectedPosts" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/StoweCollectedPosts</a><br>
<br>
And I re-published a few articles on my site and added some<br>
notes/references, etc:<br>
<br>
<a href="http://www.tuks.nl/wiki/index.php/Main/StowePersonalEMail" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/StowePersonalEMail</a><br>
<a href="http://www.tuks.nl/wiki/index.php/Main/StoweFoundationUnificationPhysics" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/StoweFoundationUnificationPhysics</a><br>
<a href="http://www.tuks.nl/wiki/index.php/Main/StoweNatureOfCharge" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/StoweNatureOfCharge</a><br>
<a href="http://www.tuks.nl/wiki/index.php/Main/StoweCauseGravityEmQm" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/StoweCauseGravityEmQm</a><br>
<br>
It can be helpful to update posts like these by replacing the ascii<br>
math with latex math, which is rather easy to do with my wiki site.<br>
I've just changed the site-wide edit password (see attached picture),<br>
so should anyone feel like helping a hand with that, you're most<br>
welcome. I've done some of this and in a/o the section "Stowe's aether<br>
model" on this page one can see how this improves readability and by<br>
clicking "edit" and typing the attached magic word, one can see how<br>
it's done:<br>
<br>
<a href="http://www.tuks.nl/wiki/index.php/Main/OnSpaceTimeAndTheFabricOfNatureCharge" rel="noreferrer noreferrer" target="_blank">http://www.tuks.nl/wiki/index.php/Main/OnSpaceTimeAndTheFabricOfNatureCharge</a><br>
<br>
I think the wiki can be very useful as a tool to facilitate a "group<br>
thinking" process, but it would be up to you guys to fill that in,<br>
together.<br>
<br>
If I'm the only one using the wiki, there's not going to be much of a<br>
group effort on there......<br>
<br>
> Arend: Thank you! You are doing a great job with this discussion forum about Maxwells equations and especially the discussion about the aether, vortices and gravity.<br>
><br>
<br>
Thanks a lot, much appreciated!<br>
<br>
Best regards,<br>
<br>
Arend.<br>
_______________________________________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl" rel="noreferrer" target="_blank">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" rel="noreferrer noreferrer" target="_blank">http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics</a><br>
</div>
</div>
_______________________________________________<br>
Physics mailing list<br>
<a href="mailto:Physics@tuks.nl" target="_blank">Physics@tuks.nl</a><br>
<a href="http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics" rel="noreferrer" target="_blank">http://mail.tuks.nl/cgi-bin/mailman/listinfo/physics</a><br>
</blockquote></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>